Automated Soccer Data Collection from Videos

Group members: Rob, Naseera, Atlegang, Benjamin, Elia, Ayobami, Valentine, John, Ebenezer, Ntombi, Fridah Moderators: Benjamin Rosman, Ismail Akhalwaya

Where is the foul?

 How to track soccer players and ball from live broadcast footage?

Simplifications

- Ignore changing scenes (single scene)
- Look at single camera with panning, zoom and tilt.
- No replay scenes
- Ignore lens distortion
- Consider only penalty area

Main approaches

- Divide problem:
 - Camera localization
 - Where is the camera pointing in world space?
 - Player tracking
 - Where are the players on screen?

- Transformation of world coordinates to image coordinates
- Soccer field is on ground therefore z' = 0
- Transformation implicitly captures tilt, zoom and panning
- Goal: determine transformation matrices

Method

- There are 8 free parameters in total
- We therefore need 4 point correspondences from image space to world space
- Correspondences made from key points in the image and the world space
- Penalty box lines easier to detect than center circle

 Step 1: isolate field and lines (colour thresholding, morphology)

• Step 2: Apply mask over original image

• Step 3: Convert image to binary

• Step 4: Detect straight lines (Hough transformation)

Hough Transform

	\square	
\langle		
	63.68	

Angle	Dist.
0	40
30	69.6
60	81.2
90	70
120	40.6
150	0.4

	\searrow	
\langle	294959	
	1	

Angle	Dist.
0	57.1
30	79.5
60	80.5
90	60
120	23.4
150	-19.5

• Step 5: Refine lines (least square best fit)

Step 6: Prune excess lines (distance and angle criteria)

- Step 7: Classify lines as vertical and horizontal (angle criteria)
- Step 8: Order and label sets of lines (distance criteria)

Step 9: Determine intersection points in the line pairs

Step 10: Detect intersection points in the world space

Step 11: Determine transition matrix for each corresponding set (solving linear system)

 Step 12: Use best correspondence to map world space onto image space

Football and Player Tracking Approach I

- Eliminate the ground from the image, using a ground detection algorithm
- Algorithmically, the ground is determined to be the area of the image for which green dominates. Consequently, the ground is defined to be:

$$Ground(x,y) = \begin{cases} 0 & \text{if } g(x,y) > r(x,y) > b(x,y) \\ 1 & \text{otherwise} \end{cases}$$

Eliminating the ground

Use Sobel Algorithm

- Use Sobel gradient method to extract the players, the balls and other features:
- The Sobel gradient algorithm detects the color intensity gradients, and the regions for which the value is within a certain range of the maximum intensity derivative are shown, as shown in the following;

Sobel Algorithm Output

Combine the images

Eliminate Straight Lines

 Eliminate the straight lines present on the field using Repetitive Morphological Closing

Football and Player Tracking Approach II

- Perform Frame by Frame Query
- Calculate the weighted sum of two images to account for changes in the background
- Compute the difference between the weighted average and every frame queried in the video
- Convert the derived image to gray scale
- Threshold the gray scale image to form a binary image
- Perform morphological closing to remove noise
- Detect Contours of the players and the ball on the pitch
- Apply optical flow to track the path of the players and the ball in each frame

Binary Image

Detected Players and Ball

Further Work

- Repeat procedure on stream of images (optimize various parameters)
- Automatically determine best correspondences by solving optimization problem
- Camera tracking
- Remove noise caused by lines in the pitch
- Explore more tracking algorithms to improve results

References

- Robust Camera Calibration for Sport Videos using Court Models", Dirk Farina, Susanne Krabbe, Peter H.N. de Withb, Wolfgang Effelsberg, Dept. of Computer Science IV, University of Mannheim, Germany LogicaCMG / Eindhoven University of Technology, The Netherlands
- <u>https://ias.cs.tum.edu/_media/spezial/bib/beetz09ijcss.pdf</u>
- Jog, Aditi, and Shirish Halbe. "Multiple Objects Tracking Using CAMShift Algorithm and Implementation of Trip Wire." *International Journal of Image, Graphics and Signal Processing (IJIGSP)* 5.6 (2013): 43.
- Ali, MM Naushad, M. Abdullah-Al-Wadud, and Seok-Lyong Lee. "An Efficient Algorithm for Detection of Soccer Ball and Players." *Proceedings* of Conference on Signal and Image Processing (SIP). 2012.

THANK YOU!